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Abstract. Bayesian rating of chess players requires a statistical model
of the probabilities of a win, a draw, and a loss as a function of the rating
difference between opponents. Some models are used in popular rating
systems, but they were chosen rather arbitrarily, and it was not clear
which fits the data best. In this paper, the goodness of fit of the Glenn-
David (TrueSkill), Rao-Kupper (BayesElo), and Davidson models were
measured for various databases of games between computers. Results
demonstrate that the Davidson model fits the data best. The Davidson
model features a draw distribution with longer tails, and, unlike the
other models, makes two draws equivalent to one win and one loss. The
Davidson model had not been used in any popular rating system, and
the results presented in this paper will lead to a new improved version
of BayesElo.

1 Introduction

[1], [2], [3], [4].

2 Models for Paired Comparisons with Ties

Linear models (not multidimensional, ...). Advantage of playing first may be
handled the same way for all, not mentioned here.

The Glenn-David model is used in TrueSkill [5], a rating system developed
at Microsoft, and used in their Xbox game servers. The Rao-Kupper model is
the basis of BayesElo [6], a freeware tool popular in the chess programming
community. The Davidson model is used in Edo ratings [7].

2.1 The Glenn-David Model

[8]

P (W |δ) = Φ(+δ − δ0) ;

P (L|δ) = Φ(−δ − δ0) ;

P (D|δ) = 1− P (W |δ)− P (L|δ) .

[9], Fig. 1, [10], [11]
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δ0

(a) δ = 0

δ

(b) δ > 0

Fig. 1. Principle of the Glenn-David model: the performance of a player in a game is
assumed to be a random variable with a normal distribution. The difference between the
performances of two opponents, plotted on these figures, is also normally distributed.
A draw occurs when the performances of the opponents are within δ0 of each other.
The areas of the three regions represent the probabilities of a loss, a draw, and a win.
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2.2 The Rao-Kupper Model

The Rao-Kupper model [12] is similar to the Glenn-David model, except that Φ
is replaced by the logistic function:

f(x) =
1

1 + e−x
.

Outcome probabilities become

P (W |δ) = f(+δ − δ0) ;

P (L|δ) = f(−δ − δ0) ;

P (D|δ) = 1− P (W |δ)− P (L|δ)
=
(

e2δ0 − 1
)

P (W |δ)P (L|δ) .

With the Rao-Kupper model, one win and one loss are equivalent to one draw.
When δ0 = 0, the Rao-Kupper model becomes the Bradley-Terry model [13].

2.3 The Davidson Model

[14] proposed another variation of the Bradley-Terry model. Unlike the Rao-
Kupper model, the Davidson model assumes that one win and one loss are
equivalent to two draws (instead of one):

d(δ) = ν
√

f(+δ)f(−δ) ;

P (W |δ) = f(+δ)/(1 + d(δ)) ;

P (L|δ) = f(−δ)/(1 + d(δ)) ;

P (D|δ) = d(δ)/(1 + d(δ))

= ν
√

P (W |δ)P (L|δ) .

ν is a parameter of the model that indicates the probability of draws. ν = 0 is
equivalent to the Bradley-Terry model.

2.4 Individual Draw Percentages

[15], [16]

3 Model Selection

Use cross validation to determine a good model.

See Table 1.
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P (W ) + P (D)
P (W ) + P (D)/2
P (W )

(a) Glenn-David

P (W ) + P (D)
P (W ) + P (D)/2
P (W )

(b) Rao-Kupper

P (W ) + P (D)
P (W ) + P (D)/2
P (W )

(c) Davidson

Fig. 2. Outcome probabilities as a function of rating difference δ. Parameters of the
models were chosen so that P (W |δ = 0) = P (D|δ = 0) = P (L|δ = 0) = 1/3. Horizontal
axes were scaled so that P (W )+P (D)/2 has the same derivative at δ = 0 for all models.



Paired Comparisons with Ties: Modeling Game Outcomes in Chess 5

Two draws
One draw
One win, one loss

(a) Glenn-David

Two draws
One draw
One win, one loss

(b) Rao-Kupper

Two draws
One draw
One win, one loss

(c) Davidson

Fig. 3. Posterior rating probability densities with a uniform prior. Parameters and
scales are like in Figure 2.
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RK GD DV DV−RK DV−GD

CCRL40/40 -846135 -845638 -845466 669 172
CEGT-blitz -1840377 -1839400 -1838979 1398 421
CCRL-blitz -1963747 -1962979 -1962675 1072 305

Table 1. Total log-likelihood of 10-fold cross-validation.

4 Conclusion

The experiments reported in this paper demonstrate that the Davidson model
fits computer-chess data better than the Rao-Kupper and Glenn-David model.
Of the three models tested, the Rao-Kupper fits the data worst. The Rao-Kupper
model was used in the very popular BayesElo tool. The result presented in this
paper will lead to a new improved version of BayesElo.

These experiments open some directions for future research. First, the mod-
els were tested with computer-chess data only. It would be interesting to test
whether other games with draws (such as reversi, or Go with integer komi) pro-
duce similar results. It is also very clear that in games such as chess or reversi
the draw rate increases with player strength. In order to deal with data sets that
combine players of very different strengths, it would be good to have a statistical
model where the draw rate depends on strength.
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A MM Formula for the Rao-Kupper and Davidson

Models

[17]

Data: wij , lij , dij are respectively wins, losses and draws of i against j, i
playing as White.

Model parameters: γi is the strength of player i. θw is the advantage of playing
as White. θd is the draw parameter.

Model (i is White):

A.1 Rao Kupper Model

Outcome probabilities:

P (i beats j) =
θwγi

θwγi + θdγj

P (j beats i) =
γj

θwθdγi + γj

P (i ties j) = (θ2d − 1)P (i beats j)P (j beats i)
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Update rules:

γi ←

∑

j

wij + dij + lji + dji

∑

j

(dij + wij)θw
θwγi + θdγj

+
(dij + lij)θdθw
θdθwγi + γj

+
(dji + wji)θd
θwγj + θdγi

+
dji + lji

θdθwγj + γi

θw ←

∑

ij

wij + dij

∑

ij

(wij + dij)γi
θwγi + θdγj

+
(lij + dij)θdγi
θdθwγi + γj

θd ← α+
√

α2 + 1, with α =

∑

ij

dij

∑

ij

(wij + dij)γj
θwγi + θdγj

+
(lij + dij)θwγi
θdθwγi + γj

A.2 Davidson Model

Outcome probabilities:

P (i beats j) =
θwγi

θwγi + γj + θd
√

θwγiγj

P (j beats i) =
γj

θwγi + γj + θd
√

θwγiγj

P (i ties j) = θd
√

P (i beats j)P (j beats i)
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Update rules:

γi ←

∑

j

wij +
dij
2

+ lji +
dji
2

∑

j

(

θw + θd

√

θwγj
γi

)

wij + dij + lij

θwγi + γj + θd
√

θwγiγj
+

(

1 + θd

√

θwγj
γi

)

wji + dji + lji

θwγj + γi + θd
√

θwγiγj

θw ←
(

−b+
√
b2 + 16ac

4a

)2

, with

a =
∑

ij

(wij + dij + lij)γi

θwγi + γj + θd
√

θwγiγj
,

b =
∑

ij

(wij + dij + lij)θd
√
γiγj

θwγi + γj + θd
√

θwγiγj
, and

c =
∑

ij

wij +
dij
2

θd ←

∑

ij

dij

∑

ij

(wij + dij + lij)
√

θwγiγj

θwγi + γj + θd
√

θwγiγj


